55 capítulos
Medium 9788582713662

Capítulo 3 - Água e Células Vegetais

Lincoln Taiz, Eduardo Zeiger, Ian Max Møller, Angus Murphy Grupo A PDF Criptografado

3

Água e Células

Vegetais

A

água desempenha um papel fundamental na vida da planta. A fotossíntese exige que as plantas retirem dióxido de carbono da atmosfera e, ao mesmo tempo, as expõe à perda de água e à ameaça de desidratação.

Para impedir a dessecação das folhas, a água deve ser absorvida pelas raízes e transportada ao longo do corpo da planta. Mesmo pequenos desequilíbrios entre a absorção e o transporte de água e a perda desta para a atmosfera podem causar déficits hídricos e o funcionamento ineficiente de inúmeros processos celulares. Portanto, equilibrar a absorção, o transporte e a perda de

água representa um importante desafio para as plantas terrestres.

Uma grande diferença entre células animais e vegetais, e que tem um impacto imenso sobre suas respectivas relações hídricas, é que as células vegetais têm paredes celulares. As paredes celulares permitem às células vegetais desenvolverem enormes pressões hidrostáticas internas, denominadas pressão de turgor. A pressão de turgor é essencial para muitos processos fisiológicos, incluindo expansão celular, abertura estomática, transporte no floema e vários processos de transporte através de membranas. A pressão de turgor também contribui para a rigidez e a estabilidade mecânica de tecidos vegetais não lignificados. Neste capítulo, considera-se de que forma a água se movimenta para dentro e para fora das células vegetais, enfatizando as suas propriedades moleculares e as forças físicas que influenciam seu movimento em nível celular.

Ver todos os capítulos
Medium 9788582713662

Capítulo 24 - Estresse Abiótico

Lincoln Taiz, Eduardo Zeiger, Ian Max Møller, Angus Murphy Grupo A PDF Criptografado

24

Estresse Abiótico

A

s plantas crescem e se reproduzem em ambientes adversos, que contêm uma multiplicidade de fatores abióticos (não vivos) químicos e físicos, que variam conforme o tempo e a localização geográfica. Os parâmetros ambientais abióticos primários que afetam o crescimento vegetal são luz (intensidade, qualidade e duração), água (disponibilidade no solo e umidade), dióxido de carbono, oxigênio, conteúdo e disponibilidade de nutrientes no solo, temperatura e toxinas (i.e., metais pesados e salinidade). As flutuações desses fatores ambientais fora de seus limites normais em geral têm consequências bioquímicas e fisiológicas negativas para as plantas. Por serem sésseis, as plantas são incapazes de evitar o estresse abiótico simplesmente pelo deslocamento para um ambiente mais favorável. Como alternativa, elas desenvolveram a capacidade de compensar as condições estressantes, mediante alteração dos processos fisiológicos e de desenvolvimento para manter o crescimento e a reprodução.

Ver todos os capítulos
Medium 9788582713662

Capítulo 7 - Fotossíntese: Reações Luminosas

Lincoln Taiz, Eduardo Zeiger, Ian Max Møller, Angus Murphy Grupo A PDF Criptografado

7

Fotossíntese: Reações

Luminosas

A

vida na Terra depende, em última análise, da energia vinda do sol.

A fotossíntese é o único processo de importância biológica que pode aproveitar essa energia. Uma grande fração dos recursos energéticos do planeta resulta da atividade fotossintética em épocas recentes ou passadas (combustíveis fósseis). Este capítulo introduz os princípios físicos básicos que fundamentam o armazenamento de energia fotossintética, bem como os conhecimentos recentes sobre a estrutura e a função do aparelho fotossintético.

O termo fotossíntese significa, literalmente, “síntese utilizando a luz”.

Como será visto neste capítulo, os organismos fotossintetizantes utilizam a energia solar para sintetizar compostos carbonados complexos. Mais especificamente, a energia luminosa impulsiona a síntese de carboidratos e a liberação de oxigênio a partir de dióxido de carbono e água:

6 CO2

Dióxido de carbono

+

6 H2O

Ver todos os capítulos
Medium 9788582713662

Capítulo 11 - Translocação no Floema

Lincoln Taiz, Eduardo Zeiger, Ian Max Møller, Angus Murphy Grupo A PDF Criptografado

11

Translocação no Floema

A

sobrevivência no ambiente terrestre impôs sérios desafios às plantas, principalmente quanto à necessidade de obter e de reter a água.

Em resposta a essas pressões ambientais, as plantas desenvolveram raízes e folhas. As raízes fixam as plantas e absorvem água e nutrientes; as folhas absorvem luz e realizam as trocas gasosas. À medida que as plantas crescem, as raízes e as folhas tornam-se gradativamente separadas no espaço. Assim, os sistemas evoluíram de forma a permitir o transporte de longa distância e a tornar eficiente a troca dos produtos da absorção e da assimilação entre a parte aérea e as raízes.

Os Capítulos 4 e 6 mostraram que, no xilema, ocorre o transporte de

água e sais minerais desde o sistema de raízes até as partes aéreas das plantas. No floema, dá-se o transporte dos produtos da fotossíntese – particularmente os açúcares – das folhas maduras para as áreas de crescimento e armazenamento, incluindo as raízes.

Ver todos os capítulos
Medium 9788582713662

Capítulo 8 - Fotossíntese: Reações de Carboxilação

Lincoln Taiz, Eduardo Zeiger, Ian Max Møller, Angus Murphy Grupo A PDF Criptografado

8

Fotossíntese: Reações de Carboxilação

N

o Capítulo 5, foram examinadas as necessidades das plantas em relação a nutrientes minerais e luz para poderem crescer e completar seu ciclo de vida. Uma vez que a quantidade de matéria em nosso planeta permanece constante, a transformação e a circulação de moléculas pela biosfera demandam um fluxo contínuo de energia. De outra forma, a entropia aumentaria e o fluxo de matéria, em última análise, pararia. A principal fonte de energia para a sustentação da vida na biosfera é a energia solar que atinge a superfície da Terra. Os organismos fotossintetizantes capturam cerca de 3 x 1021 Joules por ano de energia da luz solar e a utilizam para a fixação de aproximadamente 2 x 1011 toneladas de carbono por ano.

Há mais de 1 bilhão de anos, células heterotróficas dependentes de moléculas orgânicas produzidas abioticamente adquiriram a capacidade de converter a luz solar em energia química, mediante endossimbiose primária com uma cianobactéria ancestral. Comparações recentes das sequências de aminoácidos de proteínas de plastídios, cianobactérias e eucariotos permitiram agrupar a progênie desse evento antigo sob a denominação de Archaeplastidae, que engloba três linhagens principais: Chloroplastidae (Viridiplantae: algas verdes, plantas terrestres), Rhodophyceae (algas vermelhas) e Glaucophytae (algas unicelulares contendo plastídios semelhantes a cianobactérias, chamadas de cianelas). A integração genética da cianobactéria com seu hospedeiro reduziu algumas funções pela perda de genes e estabeleceu um mecanismo complexo nas membranas externa e interna para direcionar (1) proteínas codificadas pelo núcleo para o endossimbionte e (2) proteínas codificadas pelo plastídio para o hospedeiro. Os eventos endossimbióticos implicaram o ganho de novas rotas metabólicas.

Ver todos os capítulos

Visualizar todos os capítulos